www.jmolecularsci.com

ISSN:1000-9035

Standardization of simple low-cost Conventional PCR for the identification of *Candida parapsilosis* species complex

R Hari Presanambika¹, Vijayakishore Thanneru², Kanagasabapathi Karthika³, Thayanidhi Premamalini*, Anupma Jyoti Kindo⁴

^{1,2,3,4}Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, 600106, India.

⁵Professor, Department of Microbiology, Sri Ramachandra Medical College & Research Institute, SRIHER, Porur, Chennai, Tamilnadu, 600106, India.

Article Information

Received: 12-09-2025 Revised: 07-10-2025 Accepted: 29-10-2025 Published: 19-11-2025

Keywords

Candida parapsilosis complex, Complex specific primers, Early diagnosis, Polymerase Chain Reaction.

ABSTRACT

Background and objectives: Candida parapsilosis complex have been reported as the second most common species isolated from patients with invasive candidiasis. Although conventional phenotypic techniques are available, in practice, many other Candida species are also known to produce similar phenotypic presentations. Hence, confirmation of the species cannot be relied upon by these methods. Therefore, there is a need for molecular methods which will help in the accurate identification of this complex.

Materials and methods: All *Candida* isolates received in the laboratory during the study period were subjected to phenotypic identification. It was confirmed by Genotypic identification techniques like Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) using pan fungal primers and restriction enzyme. Species specific primers were designed and the PCR was standardized for early identification of *C. parapsilosis* isolates.

Results: About 14.9% (n=58) of the isolates were identified as *C. parapsilosis* complex. The designed primers were tested against all the clinical isolates as well as the control strains and it produced band only for *C. parapsilosis* complex at 362 bp whereas it did not produce band for other *Candida* species (Negative control), thus, validating our result. Further, the representative isolates have been confirmed by gene sequencing which showed 100% concordance with our results for *C. parapsilosis* complex identification.

Conclusion: This simple, low-cost conventional PCR assay performed directly from clinical isolate aids in early diagnosis in less than 3 hours, allowing timely treatment and management of infections. It also helps to ascertain the prevalence database for epidemiological studies and outbreak investigations.

©2025 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.(https://creativecommons.org/licenses/by-nc/4.0/)

INTRODUCTION:

The importance of non-albicans *Candida* has been increasing in the past decade mainly due to the emergence of new resistance species of *Candida* and also due to the improved diagnostic facilities available worldwide. Of the non-albicans *Candida* (NAC) species *C. tropicalis*, *C. parapsilosis* complex and *C. glabrata* are some of the commonly isolated species (1).

C. parapsilosis complex is one of the most common Candida species causing invasive diseases

worldwide. They are commensals of human skin but are known to cause invasive infections like endocarditis, meningitis, peritonitis etc (2). Previously classified into group I, II, III, now they are given specific species names C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis respectively. They are collectively called Candida parapsilosis complex (3). They are three distinct but closely related species. Over the past 20 years, human infections brought on by the Candida parapsilosis species complex have significantly increased in importance and frequency (4). Their capacity to form biofilms and extracellular slime helps in their attachment to catheters and prosthetic They also secrete enzymes like devices. phospholipases, protease, lipases and other hydrolytic enzymes. All these factors contribute to the high virulence and pathogenicity of the C. parapsilosis complex among NAC species (1). They are most commonly implicated in infections associated with indwelling catheters. hyperalimentation solutions, medical devices or fluids, prosthetic devices, steroids, H2 blockers and immunocompromised conditions like neutropenia, AIDS. They are found on the hands of health care workers which serves as a source of nosocomial outbreaks (Govrins & Lass-Flörl, 2024).

In recent studies, C. parapsilosis complex were found to show increased resistance to azoles compared to echinocandins. Cross resistance between antifungals were also noted in C. parapsilosis complex in the outbreak isolates (6,7,8). Hence molecular identification of C. parapsilosis complex will help clinicians in the choice of drug by correct identification and also help to ascertain the prevalence database for epidemiological purposes. Although conventional phenotypic identification techniques are available for the identification of *C. parapsilosis* complex. are laborious, time consuming and confirmation of the species cannot be relied upon by these methods. Therefore, there is a need for molecular methods which will help in the accurate identification of the species complex.

MATERIALS AND METHODS:

This study was conducted from August 2023 to July 2024 in the Department of Microbiology in a tertiary care center after obtaining an institutional ethical clearance. All 388 Candida isolates obtained from various clinical samples like catheter tip, blood, urine, tissue, pus, nasal swab was used for the study. All the samples that grew yeast were initially identified by conventional phenotypic techniques and it was further confirmed by genotypic identification techniques with appropriate control strains.

Presumptive phenotypic identification of *Candida* species:

The samples received were initially subjected to gram staining. Germ tube test was performed to rule out C. albicans from NAC species. All the isolates were subcultured on Sabouraud's Dextrose Agar (SDA) for maintenance of the isolates and chromogenic media like Triphenyl Tetrazolium medium (TTZ) and HiCrome agar to differentiate from other Candida species. All the isolates producing cream to pink color colonies in HiCrome agar were presumptively identified as parapsilosis complex. Sugar assimilation and fermentation tests were also done for differentiation.

Molecular Identification Techniques:

Genotypic identification was done by extracting DNA using in-house phenol chloroform method with minor modifications. This was followed by Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) using Pan fungal primers and *Msp* I restriction enzyme (9,10).

Polymerase Chain Reaction (PCR):

The PCR amplification of the internal transcribed spacer region was carried out using universal fungal primers i.e., ITS 1 (5' - TCC GTA GGT GAA CCT GCG G - 3') and ITS 4 (5' - TCC TCC GCT TAT TGA TAT GC -3'. The PCR master mix was prepared containing 25 µl of PCR mix (Takara, Japan), 1 µl of forward and reverse primer, 5 µl of template DNA, and the volume was increased with sterile nuclease-free water to reach 50 µl. The reaction mixtures were amplified in a thermal cycler (Veriti 96 well, Applied Biosystems, USA), with the following reaction conditions: at 95 °C for 5 min, followed by 35 cycles at 95 °C for 30 sec, 56 °C for 30 sec, and 72 °C for 30 sec, with a final extension period at 72 °C for 10 min. After amplification, 10 µl of the PCR product was subjected to gel electrophoresis in 1.5% agarose gel, stained with ethidium bromide, and visualized under ultraviolet illumination in a Bio-Rad Gel Documentation system (USA).

Restriction Fragment Length Polymorphism (PCR-RFLP):

RFLP was done by using Msp I enzyme (GeNei, Banglore), 2µl of 10X enzyme buffer, 10µl of PCR product and the volume was made upto to 20µl by adding nuclease free water. The mixture was incubated at 37°C for 1 hour and 10 µl of the product was subjected to gel electrophoresis in 2% agarose gel, stained with ethidium bromide, and visualized under ultraviolet illumination in a Bio-Rad Gel Documentation system (USA). Isolates producing band at ~520 bp region were sent for

gene sequencing to confirm the identification of *C. parapsilosis* species complex.

In-house primer designing:

The nucleotide sequences of the ITS region of *C. parapsilosis* species complex were obtained from the NCBI database and were aligned using MEGA software (version 11). The primers were designed by using Primer3web software v4.1 (https://primer3.ut.ee/). It was verified by NCBI Nucleotide BLAST tool and further analysed by insilico PCR (http://insilico.ehu.es/user_seqs/) software. The primers were synthesized by Sigma-Aldrich Chemical Pvt. Ltd., Bangalore.

Standardization of polymerase chain reaction for detection of *C. parapsilosis* complex:

PCR standardization was done using the sequence confirmed C. parapsilosis complex isolates which were taken as positive controls. ATCC strains of C. albicans, C. krusei, C. tropicalis and sequence confirmed C. glabrata, C. guilliermondii, C. auris were used as negative controls. The in-house designed primers (RHPCPF-CAGAATGAAAAGTGCTTAACTGC -3`, RHPCPR- 5'- TCTTTCAAGCAAACCCAGCG -3') were tested against all the clinical isolates and control strains. The reaction was carried out for 25μl, which contains 12.5μl of Master mix (TAKARA, Japan), 0.5µl of forward primer, 0.5µl of reverse primer and 11.5µl of nuclease free water. A single isolated colony was picked and mixed with the master mix. PCR amplification was carried out in a thermocycler. The following were the PCR reaction conditions for the identification of C. parapsilosis complex: initial denaturation at 95°C for 5 minutes followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, extension at 72°C for 30 seconds and final extension at 72°C for 10 minutes. 10µl of the amplified products were analyzed by using 2% agarose gel electrophoresis stained with ethidium bromide, and visualized under ultraviolet illumination in a Bio-Rad Gel Documentation system (USA).

RESULTS:

A total of 388 Candida isolates showing budding yeast cells with and without pseudohyphae were identified by gram staining. Formation of germ tube was observed in 114 Candida isolates. On HiCrome agar, C. albicans produced green color colonies whereas C. tropicalis produced metallic blue colonies and remaining all other Candida isolates produced cream to pink, pink to purple colonies (Fig. 1). Only C. albicans and C. tropicalis were able to differentiate phenotypically by growth on HiCrome agar whereas all other isolates produced similar color pattern as C.

parapsilosis species complex. Further, genotypic technique by PCR-RFLP identified all the clinical Candida isolates as follows C. albicans-114, C. tropicalis-138, Candida parapsilosis complex-58, C. glabrata-26, C. krusei-14 and other NAC-38 (Fig. 2 and 3).

All 388 clinical *Candida* isolates were then subjected to PCR for in-house designed *C. parapsilosis* complex specific primers. All *Candida parapsilosis* complex (n=58) isolates produced band at 362bp while no band was observed for other *Candida* species. Bright sharp bands were observed at 362 bp region for the positive controls whereas no bands were observed for the negative controls (Fig. 4). Thus, the controls were satisfactory. This conventional PCR method shows 100% concordance with the gene sequencing results which correctly identifies all *C. parapsilosis* species complex. Thus, validating our assay.

Nucleotide sequence accession numbers

The sequences obtained in this study have been provided with the following GenBank accession numbers – PQ721029, PQ721032, PQ721033, PQ722542-PQ722546.

DISCUSSION:

Recent studies have reported higher prevalence and distribution of *Candida parapsilosis* complex species from all clinical samples (11,12). In our study, the prevalence of *Candida parapsilosis* complex accounts for about 14.9%, whereas in other countries the prevalence is higher with 29.5% (13) and 36.6% (14). This shows that there is a considerable variation in the distribution of *Candida parapsilosis* complex at different geographic locations.

Phenotypic methods like growth on chromogenic media, sugar assimilation and fermentation tests for identification of Candida are inexpensive and simple but are subjective, requires training and are dependent on the growth medium and temperature. Moreover, they have low discriminating capacity for few Candida species. Hence, conventional phenotypic methods cannot be satisfactorily relied upon (15,16,17). Biochemical tests by Vitek YBC identifies 87.3% of the Candida species correctly after 24-48 hrs of incubation still has disadvantages that C. sake was misidentified as C. parapsilosis which may result in inappropriate management (18). In our study, 136 of 388 (35.1%) isolates were shown to have phenotypic characteristics of C. parapsilosis complex but only 58 out of 136 were C. parapsilosis complex by genotypic techniques. 57.4% (78 out of 136) isolates were phenotypically misidentified as C. parapsilosis species complex. Similarly, in a study conducted by Coignard C et al 35% of the misidentifications were C. parapsilosis

with 14% of C. parapsilosis misidentified as C. albicans by CHROM agar and API 20C AUX system. 53% of the misidentified profiles were interpreted as "acceptable" to "low discrimination" by API 20C AUX system (19). Cordeiro et al in their study showed that C. famata and C. gulliermondi can phenotypically mimic C. parapsilosis. 6 out of 34 isolates showing cellular arrangement of *C. parapsilosis* were found to be *C.* gulliermondi by DNA sequencing (20). However, in our study, C. gulliermondi control strain (negative control) produced no band with our inhouse designed complex specific primers which shows high specificity of the standardized conventional PCR assay. Hence a reliable test is required for the definite identification of C. parapsilosis complex.

Molecular techniques are always better choice in accurately identifying Candida species especially C. parapsilosis complex which can be performed from culture or directly from the samples requiring less time compared to phenotyping methods. DNA extraction, PCR amplification followed by restriction fragment length polymorphism (PCR-RFLP), DNA sequencing, MALDI-TOF-MS studies, and real-time PCR experiments involving probe primers are among the several molecular techniques that have been developed for identification. However, these methods involve costly reagents or equipment, and they are timeconsuming, tedious, and technically challenging. Therefore, a PCR done using a specific primer will further reduce the time required for confirmation of the species.

This conventional PCR by in-house designed complex specific primers accurately detected all *Candida parapsilosis* complex (n=58) which correlates with the gene sequencing results, thereby validating the PCR specificity. In addition, other *Candida* species were also tested to ascertain the robustness of the PCR assay. Hence in this study by using complex specific primers, the PCR shows 100% sensitivity and specificity for *C. parapsilosis* complex isolates.

CONCLUSION:

This conventional PCR assay is a cost-effective method which can be used in standalone lab where advanced molecular techniques are not available for *C. parapsilosis* complex identification. Since it is done directly from clinical isolates it provides quick results, allowing for timely treatment and management of infection in high-risk patients and catheter related infections where its prevalence is higher. Accurate identification of *C. parapsilosis* complex facilitates early detection of outbreaks and monitoring of antifungal resistance patterns

enabling prompt implementation of infection control measures. It facilitates epidemiological investigations in various geographic location and aids in determining the prevalence of *C. parapsilosis* complex and identify its risk factors.

Fig. 1. Phenotypic identification of different $\it Candida$ species on Hichrome agar

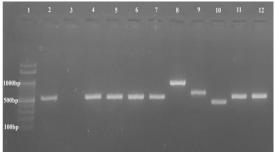


Fig. 2. PCR amplification of ITS region for *Candida* species using PAN fungal primers.

Lane 1: DNA marker (100bp), Lane 2: Positive control (ATCC *C. albicans* 90028), Lane 3: Negative control (Nuclease free water), Lane 4: *C. albicans*, Lane 5: *C. tropicalis*, Lane 6: *C. parapsilosis*, Lane 7: *C. krusei*, Lane 8: *C. glabrata*, Lane 9: *C. guilliermondii*, Lane 10: *C. auris*, Lane 11: *C. orthopsilosis*, Lane 12: *C. metapsilosis*

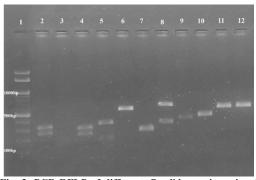


Fig. 3. PCR-RFLP of different Candida species using MspI restriction enzyme.

Lane 1: DNA marker (100bp), Lane 2: Positive control (ATCC *C. albicans* 90028), Lane 3: Negative control (Nuclease free water), Lane 4: *C. albicans*, Lane 5: *C. tropicalis*, Lane 6: *C. parapsilosis*, Lane 7: *C. krusei*, Lane 8: *C. glabrata*, Lane 9: *C. guilliermondii*, Lane 10: *C. auris*, Lane 11: *C. orthopsilosis*, Lane 12: *C. metapsilosis*

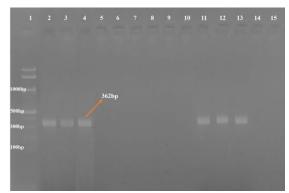


Fig. 4. Amplification of PCR products using complex specific primers with control strains.

Lane 1: DNA marker (100bp), Lane 2: Positive control (ATCC C. parapsilosis 90018), Lane 3: Positive control (sequence confirmed orthopsilosis), Lane 4: Positive control (sequence confirmed C. metapsilosis), Negative control (ATCC C. albicans 90028), Lane 6: Negative control (ATCC C. tropicalis 750), Lane 7: Negative control (C. krusei), Lane 8: Negative control (C. glabrata), Lane 9: Negative control (C. guilliermondii), Lane 10: Negative control (C. auris), Lane 11: Sample-C. parapsilosis complex, Lane 12: Sample-C. parapsilosis complex, Lane 13: Sample-C. parapsilosis complex, Lane 14: Sample-other Candida species, Lane 13: Sampleother Candida species.

ACKNOWLEDGEMENTS:

None.

REFERENCES:

- Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 2012; 36(2): 288-305.
- Badali H, Rezaie S, Meis JF, Afshari SAK, Modiri M, Hagen F, et al. Microsatellite genotyping of clinical Candida parapsilosis isolates. Curr Med Mycol 2017; 3(4): 15-20.
- Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol 2005; 43(1): 284-292.
- Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 2008; 21(4): 606-625.
- Govrins M, Lass-Flörl C. Candida parapsilosis complex in the clinical setting. Nat Rev Microbiol 2024; 22: 46-59.
- Neji S, Hadrich I, Trabelsi H, Abbes S, Cheikhrouhou F, Sellami H, et al. Virulence factors, antifungal susceptibility and molecular mechanisms of azole resistance among *Candida parapsilosis* complex isolates recovered from clinical specimens. *J Biomed Sci* 2017; 24: 67
- de Toro M, Torres MJ, Maite R, Aznar J. Characterization of *Candida parapsilosis* complex isolates. *Clin Microbiol Infect* 2011; 17(3): 418-424.
- Kuhn DM, Mukherjee PK, Clark TA, Pujol C, Chandra J, Hajjeh RA, et al. 2004. Candida parapsilosis

- characterization in an outbreak setting. *Emerg Infect Dis* 2004; 10(6): 1074-1081.
- Mirhendi H, Makimura K, Khoramizadeh M, Yamaguchi H. A one-enzyme PCR-RFLP assay for identification of six medically important *Candida* species. *Nippon Ishinkin Gakkai Zasshi* 2006; 47(3): 225-229.
- Vijayakumar R, Giri S, Kindo AJ. Molecular species identification of *Candida* from blood samples of intensive care unit patients by polymerase chain reaction–restricted fragment length polymorphism. *J Lab Physicians* 2012; 4(1): 1-4.
- Maria S, Barnwal G, Kumar A, Mohan K, Vinod V, Varghese A, et al. Species distribution and antifungal susceptibility among clinical isolates of *Candida* parapsilosis complex from India. Rev Iberoam Micol 2018; 35(3): 147-150.
- Arastehfar A, Daneshnia F, Najafzadeh MJ, Hagen F, Mahmoudi S, Salehi M, et al. Evaluation of molecular epidemiology, clinical characteristics, antifungal susceptibility profiles, and molecular mechanisms of antifungal resistance of Iranian Candida parapsilosis species complex blood isolates. Front Cell Infect Microbiol 2020; 10: 206.
- Cantón E, Pemán J, Quindós G, Eraso E, Miranda-Zapico I, Álvarez M, et al. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemo 2011; 55(12): 5590-5596.
- 14. Xiao M, Fan X, Chen S, Wang H, Sun Z, Liao K, et al. Antifungal susceptibilities of Candida glabrata species complex, Candida krusei, Candida parapsilosis species complex and Candida tropicalis causing invasive candidiasis in China: 3 year national surveillance. J Antimicrob Chemother 2015; 70(3): 802-810.
- Marinho SA, Teixeira AB, Santos OS, Cazanova RF, Ferreira CAS, Cherubini K, et al. Identification of Candida spp. by phenotypic tests and PCR. Braz J Microbiol 2010; 41(2): 286-294.
- Farooqi J, Jabeen K, Saeed N, Zafar A, Brandt ME, Hasan R. Species identification of invasive yeasts including *Candida* in Pakistan: limitations of phenotypic methods. *J Pak Med Assoc* 2012; 62(10): 995-998.
- Cendejas-Bueno E, Gomez-Lopez A, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M. Identification of pathogenic rare yeast species in clinical samples: comparison between phenotypical and molecular methods. *J Clin Microbiol* 2010; 48(5): 1895-1899.
- Latouche GN, Daniel HM, Lee OC, Mitchell TG, Sorrell TC, Meyer W. Comparison of use of phenotypic and genotypic characteristics for identification of species of the anamorph genus *Candida* and related teleomorph yeast species. *J Clin Microbiol* 1997; 35(12): 3171-3180.
- Coignard C, Hurst SF, Benjamin LE, Brandt ME, Warnock DW, Morrison CJ. Resolution of discrepant results for Candida species identification by using DNA probes. J Clin Microbiol 2004; 42(2): 858-861.
- Cordeiro RA, Sales JA, de Ponte YB, Mende PBL, Serpa R, Evangelista AJ, et al. Phenotype-driven strategies for screening Candida parapsilosis complex for molecular identification. Braz J Microbiol 2018; 49(1): 193-198.